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Abstract

The problem of a quantum particle coupled to a quantum-mechanical heat bath has a

broad and general description in terms of a generalized quantum Langevin equation, as

described in a series of papers by Ford, Lewis and O'Connell. Here we show how a squeezed-

state environment may be incorporated in this general framework.

1 INTRODUCTION

In a paper entitled "Quantum Langevin Equation", Ford, Lewis and

O'Connell [1] gave a broad and general description, in terms of a generalized

quantum Langevin equation (GLE), of a quantum particle, moving in an

arbitrarily external potential and coupled to a quantum-mechanical heat bath.

Related papers included an extension incorporating the presence of an external

time-dependent field [2]. In Ref. 1, we presented the general form of this

equation consistent with fundamental physical requirements, in particular

causality andthe second law of thermodynamics. Next, we discussed an

independent-oscillator (IO) model of the heat bath and we showed that, in

addition to being a simple and convenient model with which to calculate, the

most general GLE can be realized with an IO model, in addition, the IO model

incorporates many other models that have appeared in the literature, in

particular the blackbody radiation heat bath.

In the IO model, the quantum particle is surrounded by an infinitely large

number of heat-bath particles, each attached to it by a spring. In Ref .1, the

heat-bath is taken to be at temperature T. Here, we assume that the modes of

the bath are squeezed and our purpose is to outline what aspects of Ref. 1 need
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to be modified as a result. As it turns out, the only changes occur in expressions

involving ensemble averages, specifically the autocorrelations of the random

(noise) force F(t) and the oscillator position x(t).

2 DISCUSSION

As before, the Hamiltonian of the IO system is

+ )
J

(1)

Here m is the mass of the quantum particle while mj and coj refer to the mass and

oscillator frequency of heat-bath oscillator j. In addition, x and p are the

coordinate and momentum operators for the quantum particle and qj and pj are

the corresponding quantities for the heat-bath oscillators. Also, V(x) is a one-

dimensional potential (but generalization to three dimensions is

straightforward[I]). Use of the Heisenberg equations of motion lead to the GLE

describing the time development of the particle motion:

mR + dt l_(t- t')_(t') + V (x) = F(t), (2)

where the dot and prime denote, respectively, the derivative with respect to t

and x. In addition, I_(t) is the memory function:

p.(t) = _ mjo_cos (o)jt)e(t), (3)
J

where 0(t) is the Heaviside step function. Also

F(t) = _ mj_2qjh(t) (4)

is the random (fluctuation) force, where q_(t) denotes the general solution of the

homogeneous equation (corresponding to no interaction). In Ref. 1, to find the

expression for the (symmetric) autocorrelation of F(t), we assumed that in the
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distant past the oscillators are in equilibrium at temperature T and with respect

to the heat-bath Hamiltonian. This led to the result

_F(t) F(t') + F(t') F(t))

1 f,]' do) Re[_(o} + i0+)]tlo}=¥

x coth (ho}/2kT) cos [o}(t - t')],

(5)

where I_"(o})is the Fourier transform of the memory function I_(t). To get the

corresponding result in the case of a squeezed bath, we essentially have to

generalize the expressions for <qj qk > etc. appearing in Eq.(4.12) of Ref. 1. To

this end, it is convenient to use the familiar oscillator operators a, a + and aj, a_.

As a result, using the procedure of Ref. 1, we obtain

_1_<F(t) F(t') + F(t') F(t)>
2

= __, 11mjo}3{(<a_ aj> + 1/2)cos o}j(t- t')
J

+ Re <aj aj> cos o}j (t + t')

+ Im <aj aj> sin o}j (t- t')}

f=,

2 [ do} Re "_(o}) 11o){<a*(o}) a(@. 1>) cos o}(t- t')
,to

+ Re <a(o}) a(o})> cos o} (t + t')

+lm <a(o}) a(o})> sin co(t + t')},
(6)

N

where the second equality follows from the use of the expession for Re I_(o})

given by Eq. (4.16) of Ref. 1.

In the particular case of the bath being in a thermal state, at temperature

T, the last two terms on the right-side of Eq.(6) are zero and Eq.(6) reduces to

Eq.(5). In the case of a squeezed bath, all of the terms in Eq.(6) are non-zero

and detailed expressions for the various quantities may be found, for example,

in the work of Gardiner et al. [3].
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As in the case of a thermal bath, the result for the symmetric position

autocorrelation viz. 1/2 <x(t) x (t') + x(t') x(t)> is given by the right-side of Eq.(6)

except that the integrand has an additional factor ](z(o))12,where o_(co)is the

generalized susceptibility. Such a relation is, in essence, a generalization of

the fluctuation-dissipation theorem to the case of a non-thermal bath.

In conclusion, the results of Refs. 1 and 2, supplemented by Eq.(6) of the

present paper, provide a general framework for discussing the problem of a

quantum particle in a heat-bath whose modes are squeezed.
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